博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Elasticsearch-best_fileds和most_fields策略分析以及cross-fields弊端的解决
阅读量:6843 次
发布时间:2019-06-26

本文共 9478 字,大约阅读时间需要 31 分钟。

hot3.png

  1. boost权重的控制
  2. 基于dis_max实现best_fields进行搜索
  3. 基于tie_breaker参数来优化dis_max搜索效果
  4. 基于multi_match语法来实现dis_max+tie_breaker
  5. 基于most_fields策略进行搜索
  6. 使用copy-to去解决cross-fields带来的弊端

测试数据:

POST /forum/article/_bulk{ "update": { "_id": "1"} }{ "doc" : {"title" : "this is java and elasticsearch blog"} }{ "update": { "_id": "2"} }{ "doc" : {"title" : "this is java blog"} }{ "update": { "_id": "3"} }{ "doc" : {"title" : "this is elasticsearch blog"} }{ "update": { "_id": "4"} }{ "doc" : {"title" : "this is java, elasticsearch, hadoop blog"} }{ "update": { "_id": "5"} }{ "doc" : {"title" : "this is spark blog"} }POST /forum/article/_bulk{ "update": { "_id": "1"} }{ "doc" : {"content" : "i like to write best elasticsearch article"} }{ "update": { "_id": "2"} }{ "doc" : {"content" : "i think java is the best programming language"} }{ "update": { "_id": "3"} }{ "doc" : {"content" : "i am only an elasticsearch beginner"} }{ "update": { "_id": "4"} }{ "doc" : {"content" : "elasticsearch and hadoop are all very good solution, i am a beginner"} }{ "update": { "_id": "5"} }{ "doc" : {"content" : "spark is best big data solution based on scala ,an programming language similar to java"} }POST /forum/_mapping/article{  "properties": {      "sub_title": {           "type":     "text",          "analyzer": "english",          "fields": {              "std":   {                   "type":     "text",                  "analyzer": "standard"              }          }      }  }}POST /forum/article/_bulk{ "update": { "_id": "1"} }{ "doc" : {"sub_title" : "learning more courses"} }{ "update": { "_id": "2"} }{ "doc" : {"sub_title" : "learned a lot of course"} }{ "update": { "_id": "3"} }{ "doc" : {"sub_title" : "we have a lot of fun"} }{ "update": { "_id": "4"} }{ "doc" : {"sub_title" : "both of them are good"} }{ "update": { "_id": "5"} }{ "doc" : {"sub_title" : "haha, hello world"} }POST /forum/article/_bulk{ "update": { "_id": "1"} }{ "doc" : {"author_first_name" : "Peter", "author_last_name" : "Smith"} }{ "update": { "_id": "2"} }{ "doc" : {"author_first_name" : "Smith", "author_last_name" : "Williams"} }{ "update": { "_id": "3"} }{ "doc" : {"author_first_name" : "Jack", "author_last_name" : "Ma"} }{ "update": { "_id": "4"} }{ "doc" : {"author_first_name" : "Robbin", "author_last_name" : "Li"} }{ "update": { "_id": "5"} }{ "doc" : {"author_first_name" : "Tonny", "author_last_name" : "Peter Smith"} }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63

1.如果我们想要搜索title中包含blog,同时java、elasticsearch、hadoop、spark只要包含都将搜索出来,但是我们希望拥有spark的评分最高,优先返回。我们可以使用boost,当匹配这个搜索条件计算relevance score时,将会有有更高的score

GET /forum/article/_search{  "query": {    "bool": {      "must": [        {          "match": {            "title": "blog"          }        }      ],      "should": [        {          "match": {            "title": {              "query": "java"            }          }        },        {          "match": {            "title": {              "query": "hadoop"            }          }        },        {          "match": {            "title": {              "query": "elasticsearch"            }          }        },        {          "match": {            "title": {              "query": "spark",              "boost": 5            }          }        }      ]    }  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

2.我们想搜索到title或者content中含有java或者solution的结果

GET /forum/article/_search{  "query": {    "bool": {      "should": [        {          "match": {            "title": "java solution"          }        },        {          "match": {            "content": "java solution"          }        }      ]    }  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

我们想要的结果是_id=5同时在content含有java和solution的doc.但是返回的结果却不是这样。返回doc的score顺序是_id=2 > _id=4 > _id=5,计算每个document的relevance score大致过程是:每个query的分数(每一个query对应每个document,如果满足则会算出一个score,否则没有score)乘以matched query数量,除以总query数量。我们举例来说明doc4和doc5的大致评分过程。(具体的score为一个estimate time)

Doc field each query score matched num all query num score
doc4 “title”: “this is java blog”,”content”: “i think java is the best programming language” 1.1+1.2 2 2 (1.1+1.2)*2/2=2.3
doc5 “title”: “this is spark blog”,”content”: “spark is best big data solution based on scala ,an programming language similar to java” 0+2.3 1 2 (0+2.3)*1/2=1.15

best fields策略就是让某一个被搜索的field匹配到了尽可能多的关键词作为结果返回,也就是针对多个query的搜索,直接取score最高的那一个query(也就是上述表中的doc=5中的2.3大于doc=4中的1.2和1.1)而不会考虑其他query的相关分数,如果想让搜索更相关,可以考虑下面的第3步来加入更多的score因素:

GET /forum/article/_search{  "query": {    "dis_max": {      "queries": [        {          "match": {            "title": "java solution"          }        },        {          "match": {            "content": "java solution"          }        }      ]    }  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

返回的结果将是我们想要的doc=5中content即包含java也包含solution的document.

3.在上述2的基础上,如果我们有两个docment针对多个query计算出来的最大score是相同的,此时我们只使用dis_max策略是无法更进一步获得更相关的doc,所以我们可以使用tie_breaker参数,来将其他匹配的query乘以一个权重来计算到总的score中。

GET /forum/article/_search{  "query": {    "dis_max": {      "queries": [        {          "match": {            "title": "java solution"          }        },        {          "match": {            "content": "java solution"          }        }      ],      "tie_breaker": 3    }  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

4.我们有如下的搜索,综合上面的参数来优化结果

GET /forum/article/_search{  "query": {    "dis_max": {      "queries":  [        {          "match": {            "title": {              "query": "java beginner",              "minimum_should_match": "50%",          "boost": 2            }          }        },        {          "match": {            "body": {              "query": "java beginner",              "minimum_should_match": "30%"            }          }        }      ],      "tie_breaker": 0.3    }  } }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

minimun_shoule_match是用来去长尾,比如你想搜索5个关键词,但是很多结果只是匹配1个关键词,这样的结果会和想要的相差甚远,这些结果就是长尾。用minimun_shoule_match可以控制结果的精准度,只有匹配一定数量的关键词的数据才能够返回。

同样上述的搜索可以使用multi_match

GET /forum/article/_search{  "query": {    "multi_match": {      "query": "java solution",      "fields": [        "title^2",        "content"      ],      "type": "best_fields",      "tie_breaker": 0.3,      "minimum_should_match": "50%"    }  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

5.most_fields策略匹配更多的fields的doc将会有更大的score,对于搜索:

GET /forum/article/_search{  "query": {    "match": {      "sub_title": "learning courses"    }  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

我们可以看到结果是如下图: 

这里写图片描述

当我们使用most_fields来查询sub_title和sub_title.std分词和不分词的field的时候可以看出most_fields的作用:

这里写图片描述

尽管顺序没有变化(因为有其他因素的评分影响),但是匹配更多字段的doc的评分大幅度提升了

6.跨多个fields搜索同一个标识,例如搜索一个人名,可能会去first-name和last-name两个field中进行搜索,此时most_fields或者best_fields将不能够满足我们的最佳需求 

对于搜索:

GET /forum/article/_search{  "query": {    "multi_match": {      "query": "Petre Smith",      "fields": ["author_first_name","author_last_name"],      "type": "most_fields"    }  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

返回的结果score最高的是

“author_first_name”: “Smith”, 

“author_last_name”: “Williams”

而我们希望得到的结果是

“author_first_name”: “Tonny”, 

“author_last_name”: “Peter Smith”

针对多个field一些细微的relevence score算法会影响,多方面的影响是很复杂的,但是我们可以通过结果明确知道我们的结果却是被影响了

我们的解决方法是,将一个标识在跨fields的情况下,让多个field能够合并成一个field就能够解决我们的问题,比如说,一个人名会出现在first_name,last_name,现在能够合并成一个full_name就能够解决我们面临的问题

我们定义mapping来使用copy_to将多个field拷贝到一个field中去,并建立倒排索引供搜索:

PUT /forum/_mapping/article{  "properties": {      "new_author_first_name": {          "type":     "text",          "copy_to":  "new_author_full_name"       },      "new_author_last_name": {          "type":     "text",          "copy_to":  "new_author_full_name"       },      "new_author_full_name": {          "type":     "text"      }  }}POST /forum/article/_bulk{"update":{"_id":"1"}}{"doc":{"new_author_first_name":"Peter","new_author_last_name":"Smith"}}{"update":{"_id":"2"}}{"doc":{"new_author_first_name":"Smith","new_author_last_name":"Williams"}}{"update":{"_id":"3"}}{"doc":{"new_author_first_name":"Jack","new_author_last_name":"Ma"}}{"update":{"_id":"4"}}{"doc":{"new_author_first_name":"Robbin","new_author_last_name":"Li"}}{"update":{"_id":"5"}}{"doc":{"new_author_first_name":"Tonny","new_author_last_name":"Peter Smith"}}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

需要注意的是new_author_full_name是一个隐藏field,直接search并不会显示出来。然后对这个field直接进行搜索即可:

GET /forum/article/_search{ "query": {   "match": {     "new_author_full_name": "Peter Smith"   } } }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

总结: 

问题1:之前的cross_fields只是尽可能找到多的field匹配的doc,而不是某个field完全匹配的doc 
解决:合并成一个field之后是最匹配的doc被先返回 
问题2:most_fields无法使用minimum_should_match来去长尾 
解决:合并成一个field之后,在搜索的时候就可以进行去长尾 
问题3:relevance score被TF/IDF因为多个field所影响而最终不是我们期望的结果 
解决:合并之后参与评分的field相对于搜有的doc匹配的数量是相同的,数据相对均匀,不会有极端的偏差

使用原生cross_fields来实现我们的需求(推荐):

GET /forum/article/_search{  "query": {    "multi_match": {      "query": "Peter Smith",      "operator":"and",      "fields": ["author_first_name","author_last_name"],      "type": "cross_fields"    }  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

上述搜索条件为: 

Peter必须在author_first_name或者author_last_name中出现 
author_last_name必须在author_first_name或者author_last_name中出现 
针对上述问题1,2的解决可以很好的理解,但是对于问题3,cross_field会取多个query针对每一个field的idf评分最小值,而不会出现极端的情况。(举例:Smith针对author_first_name出现的频率很少最后的idf分数会很小,而author_last_name却很大,最后取小的值会避免极端的情况)

转载于:https://my.oschina.net/xiaominmin/blog/1785980

你可能感兴趣的文章
《Arduino奇妙之旅:智能车趣味制作天龙八步》一3.2 构建小发明
查看>>
《Cisco安全防火墙服务模块(FWSM)解决方案》——第2章防火墙服务模块概述
查看>>
Go语言项目(kingshard)性能优化实例剖析
查看>>
《OpenGL ES 3.x游戏开发(上卷)》一1.2 搭建Android开发环境
查看>>
《HTML5实战》——2.6 小结
查看>>
使用 Python 和 Asyncio 编写在线多人游戏(三)
查看>>
yanf4j 1.0-stable的一个压测报告
查看>>
Square 技术团队的开源其 Vim 配置文件
查看>>
《Java编码指南:编写安全可靠程序的75条建议》—— 指南6:正确地编码或转义输出...
查看>>
阿里NASA的液冷黑科技 | 彻底激活未来AI大脑超能力
查看>>
stack源码分析
查看>>
Java内存溢出(OOM)异常完全指南
查看>>
云计算十字真言及其在小博无线的实践
查看>>
用一生回味的经典语录
查看>>
你的命运不是一头骡子
查看>>
排序算法之鸽巢排序
查看>>
Appium移动自动化框架
查看>>
无线动态化解决方案总结:从WeApp到Weex
查看>>
CentOS上安装Bugzilla 4.5.2
查看>>
嵌入式 RTP通话:视频流(H.264)的传输
查看>>